The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Product Pre-Measure”

Fubini’s Theorem on Measure

Noboru Endou (2017)

Formalized Mathematics

Similarity:

The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.

Construction of Measure from Semialgebra of Sets1

Noboru Endou (2015)

Formalized Mathematics

Similarity:

In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore,...

Spaces of σ-finite linear measure

Ihor Stasyuk, Edward D. Tymchatyn (2013)

Colloquium Mathematicae

Similarity:

Spaces of finite n-dimensional Hausdorff measure are an important generalization of n-dimensional polyhedra. Continua of finite linear measure (also called continua of finite length) were first characterized by Eilenberg in 1938. It is well-known that the property of having finite linear measure is not preserved under finite unions of closed sets. Mauldin proved that if X is a compact metric space which is the union of finitely many closed sets each of which admits a σ-finite linear...