Displaying similar documents to “Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels”

Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative

Ioannis K. Argyros, Santhosh George (2017)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

This paper is devoted to the study of a multi-step method with divided differences for solving nonlinear equations in Banach spaces. In earlier studies, hypotheses on the Fréchet derivative up to the sixth order of the operator under consideration is used to prove the convergence of the method. That restricts the applicability of the method. In this paper we extended the applicability of the sixth-order multi-step method by using only hypotheses on the first derivative of the operator...

Model analysis of BPX preconditioner based on smoothed aggregation

Pavla Fraňková, Jan Mandel, Petr Vaněk (2015)

Applications of Mathematics

Similarity:

We prove nearly uniform convergence bounds for the BPX preconditioner based on smoothed aggregation under the assumption that the mesh is regular. The analysis is based on the fact that under the assumption of regular geometry, the coarse-space basis functions form a system of macroelements. This property tends to be satisfied by the smoothed aggregation bases formed for unstructured meshes.