Displaying similar documents to “On the minimum time problem in linear discrete systems with the discrete set of admissible controls”

A numerical feasible interior point method for linear semidefinite programs

Djamel Benterki, Jean-Pierre Crouzeix, Bachir Merikhi (2007)

RAIRO - Operations Research

Similarity:

This paper presents a feasible primal algorithm for linear semidefinite programming. The algorithm starts with a strictly feasible solution, but in case where no such a solution is known, an application of the algorithm to an associate problem allows to obtain one. Finally, we present some numerical experiments which show that the algorithm works properly.

A globally convergent non-interior point algorithm with full Newton step for second-order cone programming

Liang Fang, Guoping He, Li Sun (2009)

Applications of Mathematics

Similarity:

A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start...

An accurate active set Newton algorithm for large scale bound constrained optimization

Li Sun, Guoping He, Yongli Wang, Changyin Zhou (2011)

Applications of Mathematics

Similarity:

A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the...