Displaying similar documents to “Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs”

A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs

Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The generalized k-connectivity κk(G) of a graph G, mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λG(S) | S ⊆ V (G) and |S| = k}, where λG(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper we...

More on even [a,b]-factors in graphs

Abdollah Khodkar, Rui Xu (2007)

Discussiones Mathematicae Graph Theory

Similarity:

In this note we give a characterization of the complete bipartite graphs which have an even (odd) [a,b]-factor. For general graphs we prove that an a-edge connected graph G with n vertices and with δ(G) ≥ max{a+1,an/(a+b) + a - 2} has an even [a,b]-factor, where a and b are even and 2 ≤ a ≤ b. With regard to the edge-connectivity this result is slightly better than one of the similar results obtained by Kouider and Vestergaard in 2004 and unlike their results, this result has no restriction...

The edge geodetic number and Cartesian product of graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained...

Sum List Edge Colorings of Graphs

Arnfried Kemnitz, Massimiliano Marangio, Margit Voigt (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f)...

The Thickness of Amalgamations and Cartesian Product of Graphs

Yan Yang, Yichao Chen (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study...