On the AC-contact Bochner curvature tensor field on almost cosymplectic manifolds.
Endo, Hiroshi (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Endo, Hiroshi (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
González-Dávila, J.C., Vanhecke, Lieven (1997)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Adara M. Blaga (2011)
Czechoslovak Mathematical Journal
Similarity:
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
Andrzej Derdzinski (1980)
Mathematische Zeitschrift
Similarity:
Basil J. Papantoniou (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this paper we give first a classification of contact Riemannian manifolds with harmonic curvature tensor under the condition that the characteristic vector field belongs to the -nullity distribution. Next it is shown that the dimension of the -nullity distribution is equal to one and therefore is spanned by the characteristic vector field .
Oguro, Takashi (1998)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Binh, T.Q., Tamássy, L., De, U.C., Tarafdar, M. (2002)
Mathematica Pannonica
Similarity:
Zbigniew Olszak (1989)
Colloquium Mathematicae
Similarity: