Displaying similar documents to “A note on the minimal normal Fitting class”

A note on the minimal normal Fitting class

Marco Barlotti (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Un gruppo finito ciclico-per-nilpotente appartiene alla minima classe di Fitting normale se e solo se è nilpotente.

On minimal non CC-groups.

A. Osman Asar, A. Arikan (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

In this work it is shown that a locally graded minimal non CC-group G has an epimorphic image which is a minimal non FC-group and there is no element in G whose centralizer is nilpotent-by-Chernikov. Furthermore Theorem 3 shows that in a locally nilpotent p-group which is a minimal non FC-group, the hypercentral and hypocentral lengths of proper subgroups are bounded.

Solvable finite groups with a particular configuration of Fitting sets

Daniela Bubboloni (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A Fitting set is called elementary if it consists of the subnormal subgroups of the conjugates of a given subgroup. In this paper we analyse the structure of the finite solvable groups in which every Fitting set is the insiemistic union of elementary Fitting sets whose intersection is the subgroup 1.

On locally finite minimal non-solvable groups

Ahmet Arıkan, Sezgin Sezer, Howard Smith (2010)

Open Mathematics

Similarity:

In the present work we consider infinite locally finite minimal non-solvable groups, and give certain characterizations. We also define generalizations of the centralizer to establish a result relevant to infinite locally finite minimal non-solvable groups.

Minimal Niven numbers

H. Fredricksen, E. J. Ionascu, F. Luca, P. Stănică (2008)

Acta Arithmetica

Similarity:

Generation of finite groups by nilpotent subgroups

E. Damian (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

We study the generation of finite groups by nilpotent subgroups and in particular we investigate the structure of groups which cannot be generated by n nilpotent subgroups and such that every proper quotient can be generated by n nilpotent subgroups. We obtain some results about the structure of these groups and a lower bound for their orders.