Displaying similar documents to “A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory”

A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory

Giacinto Porco, Giuseppe Spadea, Raffaele Zinno (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given...

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

Similarity:

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably...

Numerical approximation of the non-linear fourth-order boundary-value problem

Svobodová, Ivona

Similarity:

We consider functionals of a potential energy ψ ( u ) corresponding to 𝑎𝑛 𝑎𝑥𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 - 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 . We are dealing with 𝑎 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑡ℎ𝑖𝑛 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑝𝑙𝑎𝑡𝑒 with 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 . Various types of the subsoil of the plate are described by various types of the 𝑛𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 nonlinear term ψ ( u ) . The aim of the paper is to find a suitable computational algorithm.

Regularity of solutions in plasticity. II: Plates

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

Similarity:

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space W 2 , 1 ( Ω ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed. ...

Twinning in minerals and metals: remarks on the comparison of a thermoelastic theory with some experimental results. Mechanical twinning and growth twinning. Nota II

Giovanni Zanzotto (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this Note II we continue the analysis of the phenomenon of mechanical twinning that we began in a preceding Note I ( 1 ) . Furthermore, we point out some fundamental properties useful in the study of growth twins, for which a fully comprehensive thermoelastic theory is not yet available.

Generalised functions of bounded deformation

Gianni Dal Maso (2013)

Journal of the European Mathematical Society

Similarity:

We introduce the space G B D of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for G B D , which leads to a compactness result for the space G S B D of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation...

Blow-up of the solution to the initial-value problem in nonlinear three-dimensional hyperelasticity

J. A. Gawinecki, P. Kacprzyk (2008)

Applicationes Mathematicae

Similarity:

We consider the initial value problem for the nonlinear partial differential equations describing the motion of an inhomogeneous and anisotropic hyperelastic medium. We assume that the stored energy function of the hyperelastic material is a function of the point x and the nonlinear Green-St. Venant strain tensor e j k . Moreover, we assume that the stored energy function is C with respect to x and e j k . In our description we assume that Piola-Kirchhoff’s stress tensor p j k depends on the tensor...

On a bifurcation problem arising in cholesteric liquid crystal theory

Carlo Greco (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a cholesteric liquid crystal the director field n ( x , y , z ) tends to form a right-angle helicoid around a twist axis in order to minimize the internal energy; however, a fixed alignment of the director field at the boundary (strong anchoring) can give rise to distorted configurations of the director field, as oblique helicoid, in order to save energy. The transition to this distorted configurations depend on the boundary conditions and on the geometry of the liquid crystal, and it is known...

Positive solutions to a class of elastic beam equations with semipositone nonlinearity

Qingliu Yao (2010)

Annales Polonici Mathematici

Similarity:

Let h ∈ L¹[0,1] ∩ C(0,1) be nonnegative and f(t,u,v) + h(t) ≥ 0. We study the existence and multiplicity of positive solutions for the nonlinear fourth-order two-point boundary value problem u ( 4 ) ( t ) = f ( t , u ( t ) , u ' ( t ) ) , 0 < t < 1, u(0) = u’(0) = u’(1) =u”’(1) =0, where the nonlinear term f(t,u,v) may be singular at t=0 and t=1. By constructing a suitable cone and integrating certain height functions of f(t,u,v) on some bounded sets, several new results are obtained. In mechanics, the problem models the...

An Artificial Viscosity Approach to Quasistatic Crack Growth

Rodica Toader, Chiara Zanini (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We introduce a new model of irreversible quasistatic crack growth in which the evolution of cracks is the limit of a suitably modified ϵ -gradient flow of the energy functional, as the "viscosity" parameter ϵ tends to zero.

A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types

Lucas Döring, Radu Ignat, Felix Otto (2014)

Journal of the European Mathematical Society

Similarity:

We study the Landau-Lifshitz model for the energy of multi-scale transition layers – called “domain walls” – in soft ferromagnetic films. Domain walls separate domains of constant magnetization vectors m α ± 𝕊 2 that differ by an angle 2 α . Assuming translation invariance tangential to the wall, our main result is the rigorous derivation of a reduced model for the energy of the optimal transition layer, which in a certain parameter regime confirms the experimental, numerical and physical predictions:...

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

Similarity:

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

Real deformations and invariants of map-germs

J. H. Rieger, M. A. S. Ruas, R. Wik Atique (2008)

Banach Center Publications

Similarity:

A stable deformation f t of a real map-germ f : , 0 p , 0 is said to be an M-deformation if all isolated stable (local and multi-local) singularities of its complexification f t are real. A related notion is that of a good real perturbation f t of f (studied e.g. by Mond and his coworkers) for which the homology of the image (for n < p) or discriminant (for n ≥ p) of f t coincides with that of f C t . The class of map germs having an M-deformation is, in some sense, much larger than the one having a good...

Homogenization of a three-phase composites of double-porosity type

Ahmed Boughammoura, Yousra Braham (2021)

Czechoslovak Mathematical Journal

Similarity:

In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size ε β ( ε > 0 and β > 0 ) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order ε 2 (the so-called double-porosity type scaling) while the matrix material has a conductivity...

Classical boundary value problems for integrable temperatures in a C 1 domain

Anna Grimaldi Piro, Francesco Ragnedda (1991)

Annales Polonici Mathematici

Similarity:

Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with C 1 -base and data in h c 1 , a subspace of L 1. We derive our results, considering the action of an adjoint operator on B T M O C , a predual of h c 1 , and using known properties of this last space.