Displaying similar documents to “Estimation of the Kronecker and products of two mean vectors in multivariate analysis”

Unbiased estimation for two-parameter exponential distribution under time censored sampling

S. Sengupta (2009)

Applicationes Mathematicae

Similarity:

The problem considered is that of unbiased estimation for a two-parameter exponential distribution under time censored sampling. We obtain a necessary form of an unbiasedly estimable parametric function and prove that there does not exist any unbiased estimator of the parameters and the mean of the distribution. For reliability estimation at a specified time point, we give a necessary and sufficient condition for the existence of an unbiased estimator and suggest an unbiased estimator...

A Cramer-Rao analogue for median-unbiased estimators.

N. K. Sung, Gabriela Stangenhaus, Herbert T. David (1990)

Trabajos de Estadística

Similarity:

Adopting a measure of dispersion proposed by Alamo [1964], and extending the analysis in Stangenhaus [1977] and Stangenhaus and David [1978b], an analogue of the classical Cramér-Rao lower bound for median-unbiased estimators is developed for absolutely continuous distributions with a single parameter, in which mean-unbiasedness, the Fisher information, and the variance are replaced by median-unbiasedness, the first absolute moment of the sample score, and the reciprocal of twice the...

Unbiased estimation of reliability for two-parameter exponential distribution under time censored sampling

S. Sengupta (2010)

Applicationes Mathematicae

Similarity:

The problem considered is that of unbiased estimation of reliability for a two-parameter exponential distribution under time censored sampling. We give necessary and sufficient conditions for the existence of uniformly minimum variance unbiased estimator and also provide a characterization of a complete class of unbiased estimators in situations where unbiased estimators exist.

Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector

Arkadiusz Kozioł (2016)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this article author obtain the best unbiased estimators of doubly exchangeable covariance structure. For this purpose the coordinate free-coordinate approach is used. Considered covariance structure consist of three unstructured covariance matrices for three-level m - variate observations with equal mean vector over v points in time and u sites under the assumption of multivariate normality. To prove, that the estimators are best unbiased, complete statistics are used. Additionally,...

A review of the results on the Stein approach for estimators improvement.

Vassiliy G. Voinov, Mikhail S. Nikulin (1995)

Qüestiió

Similarity:

Since 1956, a large number of papers have been devoted to Stein's technique of obtaining improved estimators of parameters, for several statistical models. We give a brief review of these papers, emphasizing those aspects which are interesting from the point of view of the theory of unbiased estimation.

Constructing median-unbiased estimators in one-parameter families of distributions via stochastic ordering

Ryszard Zieliński (2003)

Applicationes Mathematicae

Similarity:

If θ ∈ Θ is an unknown real parameter of a given distribution, we are interested in constructing an exactly median-unbiased estimator θ̂ of θ, i.e. an estimator θ̂ such that a median Med(θ̂ ) of the estimator equals θ, uniformly over θ ∈ Θ. We shall consider the problem in the case of a fixed sample size n (nonasymptotic approach).

On unbiased Lehmann-estimators of a variance of an exponential distribution with quadratic loss function.

Jadwiga Kicinska-Slaby (1982)

Trabajos de Estadística e Investigación Operativa

Similarity:

Lehmann in [4] has generalised the notion of the unbiased estimator with respect to the assumed loss function. In [5] Singh considered admissible estimators of function λ-r of unknown parameter λ of gamma distribution with density f(x|λ, b) = λb-1 e-λx xb-1 / Γ(b), x>0, where b is a known parameter, for loss function L(λ -r, λ-r...