Displaying similar documents to “Some remarks on permutation type tests in linear models”

On a robust significance test for the Cox regression model

Tadeusz Bednarski, Filip Borowicz (2006)

Discussiones Mathematicae Probability and Statistics

Similarity:

A robust significance testing method for the Cox regression model, based on a modified Wald test statistic, is discussed. Using Monte Carlo experiments the asymptotic behavior of the modified robust versions of the Wald statistic is compared with the standard significance test for the Cox model based on the log likelihood ratio test statistic.

Selective F tests for sub-normal models

Célia Maria Pinto Nunes, João Tiago Mexia (2003)

Discussiones Mathematicae Probability and Statistics

Similarity:

F tests that are specially powerful for selected alternatives are built for sub-normal models. In these models the observation vector is the sum of a vector that stands for what is measured with a normal error vector, both vectors being independent. The results now presented generalize the treatment given by Dias (1994) for normal fixed-effects models, and consider the testing of hypothesis on the ordering of mean values and components.

Selection in parametric models via some stepdown procedures

Konrad Furmańczyk (2014)

Applicationes Mathematicae

Similarity:

The paper considers the problem of consistent variable selection in parametic models with the use of stepdown multiple hypothesis procedures. Our approach completes the results of Bunea et al. [J. Statist. Plann. Inference 136 (2006)]. A simulation study supports the results obtained.

Kolmogorov-Smirnov two-sample test based on regression rank scores

Martin Schindler (2008)

Applications of Mathematics

Similarity:

We derive the two-sample Kolmogorov-Smirnov type test when a nuisance linear regression is present. The test is based on regression rank scores and provides a natural extension of the classical Kolmogorov-Smirnov test. Its asymptotic distributions under the hypothesis and the local alternatives coincide with those of the classical test.

Tests in weakly nonlinear regression model

Lubomír Kubáček, Eva Tesaříková (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In weakly nonlinear regression model a weakly nonlinear hypothesis can be tested by linear methods if an information on actual values of model parameters is at our disposal and some condition is satisfied. In other words we must know that unknown parameters are with sufficiently high probability in so called linearization region. The aim of the paper is to determine this region.