О многообразии алгебр Мальцева
В.Т. Филиппов (1981)
Algebra i Logika
Similarity:
В.Т. Филиппов (1981)
Algebra i Logika
Similarity:
Dzhumadil'daev, A. S., Ismailov, N. A., Tulenbaev, K. M. (2011)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: Primary 17A50, Secondary 16R10, 17A30, 17D25, 17C50. Algebras with identities a(bc)=b(ac), (ab)c=(ac)b is called bicommutative. Bases and the cocharacter sequence for free bicommutative algebras are found. It is shown that the exponent of the variety of bicommutaive algebras is equal to 2.
Ramalho, Margarita (1993)
Portugaliae mathematica
Similarity:
Tvalavadze, Marina (2012)
Serdica Mathematical Journal
Similarity:
2010 Mathematics Subject Classification: Primary 17D15. Secondary 17D05, 17B35, 17A99. This is a survey paper to summarize the latest results on the universal enveloping algebras of Malcev algebras, triple systems and Leibniz n-ary algebras.
Reiterman, Jan
Similarity:
G. Grätzer, H. Lakser (1988)
Colloquium Mathematicae
Similarity:
Bjarni Jónsson (1979)
Colloquium Mathematicae
Similarity:
В.Т. Филиппов (1984)
Algebra i Logika
Similarity:
Evelyn Nelson (1974)
Colloquium Mathematicae
Similarity:
Jerzy Płonka (1990)
Mathematica Slovaca
Similarity: