Displaying similar documents to “Weakly nonlinear regression model with constraints I: nonlinear hypothesis”

How to deal with regression models with a weak nonlinearity

Eva Tesaríková, Lubomír Kubáček (2001)

Discussiones Mathematicae Probability and Statistics

Similarity:

If a nonlinear regression model is linearized in a non-sufficient small neighbourhood of the actual parameter, then all statistical inferences may be deteriorated. Some criteria how to recognize this are already developed. The aim of the paper is to demonstrate the behaviour of the program for utilization of these criteria.

Tests in weakly nonlinear regression model

Lubomír Kubáček, Eva Tesaříková (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In weakly nonlinear regression model a weakly nonlinear hypothesis can be tested by linear methods if an information on actual values of model parameters is at our disposal and some condition is satisfied. In other words we must know that unknown parameters are with sufficiently high probability in so called linearization region. The aim of the paper is to determine this region.

Directional quantile regression in R

Pavel Boček, Miroslav Šiman (2017)

Kybernetika

Similarity:

Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation...

Underparametrization of weakly nonlinear regression models

Lubomír Kubáček, Eva Tesaříková (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A large number of parameters in regression models can be serious obstacle for processing and interpretation of experimental data. One way how to overcome it is an elimination of some parameters. In some cases it need not deteriorate statistical properties of estimators of useful parameters and can help to interpret them. The problem is to find conditions which enable us to decide whether such favourable situation occurs.

Stacked regression with restrictions

Tomasz Górecki (2005)

Discussiones Mathematicae Probability and Statistics

Similarity:

When we apply stacked regression to classification we need only discriminant indices which can be negative. In many situations, we want these indices to be positive, e.g., if we want to use them to count posterior probabilities, when we want to use stacked regression to combining classification. In such situation, we have to use leastsquares regression under the constraint βₖ ≥ 0, k = 1,2,...,K. In their earlier work [5], LeBlanc and Tibshirani used an algorithm given in [4]. However,...

Selection in parametric models via some stepdown procedures

Konrad Furmańczyk (2014)

Applicationes Mathematicae

Similarity:

The paper considers the problem of consistent variable selection in parametic models with the use of stepdown multiple hypothesis procedures. Our approach completes the results of Bunea et al. [J. Statist. Plann. Inference 136 (2006)]. A simulation study supports the results obtained.

Directional quantile regression in Octave (and MATLAB)

Pavel Boček, Miroslav Šiman (2016)

Kybernetika

Similarity:

Although many words have been written about two recent directional (regression) quantile concepts, their applications, and the algorithms for computing associated (regression) quantile regions, their software implementation is still not widely available, which, of course, severely hinders the dissemination of both methods. Wanting to partly fill in the gap here, we provide all the codes needed for computing and plotting the multivariate (regression) quantile regions in Octave and MATLAB,...