Displaying similar documents to “Fixed point and multidimensional fixed point theorems with applications to nonlinear matrix equations in terms of weak altering distance functions”

Weak Total Resolvability In Graphs

Katrin Casel, Alejandro Estrada-Moreno, Henning Fernau, Juan Alberto Rodríguez-Velázquez (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G)−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum...

The weak Phillips property

Ali Ülger (2001)

Colloquium Mathematicae

Similarity:

Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.