Displaying similar documents to “Matrix rank and inertia formulas in the analysis of general linear models”

On the equality of the ordinary least squares estimators and the best linear unbiased estimators in multivariate growth-curve models.

Gabriela Beganu (2007)

RACSAM

Similarity:

It is well known that there were proved several necessary and sufficient conditions for the ordinary least squares estimators (OLSE) to be the best linear unbiased estimators (BLUE) of the fixed effects in general linear models. The purpose of this article is to verify one of these conditions given by Zyskind [39, 40]: there exists a matrix Q such that ΩX = XQ, where X and Ω are the design matrix and the covariance matrix, respectively. It will be shown the accessibility of this condition...

Variance components and an additional experiment

Lubomír Kubáček (2012)

Applications of Mathematics

Similarity:

Estimators of parameters of an investigated object can be considered after some time as insufficiently precise. Therefore, an additional measurement must be realized. A model of a measurement, taking into account both the original results and the new ones, has a litle more complicated covariance matrix, since the variance components occur in it. How to deal with them is the aim of the paper.