The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions”

Boundaries of right-angled hyperbolic buildings

Jan Dymara, Damian Osajda (2007)

Fundamenta Mathematicae

Similarity:

We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.

Gromov hyperbolic cubic graphs

Domingo Pestana, José Rodríguez, José Sigarreta, María Villeta (2012)

Open Mathematics

Similarity:

If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity...

On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces

Marcin Mazur (2013)

Annales Polonici Mathematici

Similarity:

We give necessary and sufficient conditions for topological hyperbolicity of a homeomorphism of a metric space, restricted to a given compact invariant set. These conditions are related to the existence of an appropriate finite covering of this set and a corresponding cone-hyperbolic graph-directed iterated function system.

Gromov hyperbolicity of planar graphs

Alicia Cantón, Ana Granados, Domingo Pestana, José Rodríguez (2013)

Open Mathematics

Similarity:

We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given....