Displaying similar documents to “On the Yang-Baxter-like matrix equation for rank-two matrices”

Possible numbers ofx’s in an {x,y}-matrix with a given rank

Chao Ma (2017)

Open Mathematics

Similarity:

Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.

Remarks on the Sherman-Morrison-Woodbury formulae

Miroslav Fiedler (2003)

Mathematica Bohemica

Similarity:

We present some results on generalized inverses and their application to generalizations of the Sherman-Morrison-Woodbury-type formulae.

A bound for the rank-one transient of inhomogeneous matrix products in special case

Arthur Kennedy-Cochran-Patrick, Sergeĭ Sergeev, Štefan Berežný (2019)

Kybernetika

Similarity:

We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.

From geometry to invertibility preservers

Hans Havlicek, Peter Šemrl (2006)

Studia Mathematica

Similarity:

We characterize bijections on matrix spaces (operator algebras) preserving full rank (invertibility) of differences of matrix (operator) pairs in both directions.