On existence of the identity element in a semigroup
S. Lajos (1965)
Matematički Vesnik
Similarity:
S. Lajos (1965)
Matematički Vesnik
Similarity:
R. Hunter, L. Anderson (1972)
Fundamenta Mathematicae
Similarity:
H.J. Shyr (1976)
Semigroup forum
Similarity:
Bedřich Pondělíček (1972)
Czechoslovak Mathematical Journal
Similarity:
P. A. Meyer (1982)
Recherche Coopérative sur Programme n°25
Similarity:
T. Niedbalska (1978)
Colloquium Mathematicae
Similarity:
Peter M. Higgins (1988)
Colloquium Mathematicae
Similarity:
A. Varisco, A. Cherubini (1981)
Semigroup forum
Similarity:
Kazim, M.A., Naseeruddin, Md. (1977)
Portugaliae mathematica
Similarity:
T. Imaoka, Yamada (1983)
Semigroup forum
Similarity:
Mridul K. Sen, Sumanta Chattopadhyay (2008)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.