Structure and order structure in Abelian groups
Anne C. Morel (1968)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Anne C. Morel (1968)
Colloquium Mathematicae
Similarity:
Krzysztof Krupiński (2005)
Fundamenta Mathematicae
Similarity:
Kharazishvili, Aleksander (2015-11-18T12:34:03Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Fred Clare (1976)
Colloquium Mathematicae
Similarity:
Thomas A. Fournelle (1979)
Mathematische Zeitschrift
Similarity:
N. I. Kryuchkov (2012)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Paul Hill, Charles Megibben (1985)
Mathematische Zeitschrift
Similarity:
Peter H. Schmitt (1984)
Mémoires de la Société Mathématique de France
Similarity:
Mikaelian, Vahagn H. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
David B. Penman, Matthew D. Wells (2014)
Acta Arithmetica
Similarity:
We call a subset A of an abelian group G sum-dominant when |A+A| > |A-A|. If |A⨣A| > |A-A|, where A⨣A comprises the sums of distinct elements of A, we say A is restricted-sum-dominant. In this paper we classify the finite abelian groups according to whether or not they contain sum-dominant sets (respectively restricted-sum-dominant sets). We also consider how much larger the sumset can be than the difference set in this context. Finally, generalising work of Zhao, we provide asymptotic...
Manfred Dugas, John Irwin (1992)
Forum mathematicum
Similarity:
Terence M. Gagen (1965)
Mathematische Zeitschrift
Similarity:
Günter Lettl, Zhi-Wei Sun (2008)
Acta Arithmetica
Similarity:
William J. Gray (1968)
Colloquium Mathematicae
Similarity:
S. Midura, J. Tabor (1978)
Annales Polonici Mathematici
Similarity:
Colin C. Graham (1977)
Colloquium Mathematicae
Similarity: