Displaying similar documents to “Numerical studies of groundwater flow problems with a singularity”

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

François Beux, Maria-Vittoria Salvetti, Alexey Ignatyev, Ding Li, Charles Merkle, Edoardo Sinibaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical...

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

François Beux, Maria-Vittoria Salvetti, Alexey Ignatyev, Ding Li, Charles Merkle, Edoardo Sinibaldi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical...

Aerodynamic Computations Using a Finite Volume Method with an HLLC Numerical Flux Function

L. Remaki, O. Hassan, K. Morgan (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

A finite volume method for the simulation of compressible aerodynamic flows is described. Stabilisation and shock capturing is achieved by the use of an HLLC consistent numerical flux function, with acoustic wave improvement. The method is implemented on an unstructured hybrid mesh in three dimensions. A solution of higher order accuracy is obtained by reconstruction, using an iteratively corrected least squares process, and by a new...

Numerical solution of inviscid incompressible flow in a channel with dynamical effects

Honzátko, Radek, Horáček, Jaromír, Kozel, Karel

Similarity:

Numerical solution of unsteady 2D inviscid incompressible flows described by Euler equations over the vibrating profile NACA 0012 in a channel is studied. The finite volume method (FVM) and a higher order cell-centered scheme with an artificial dissipation at a qudrilateral C-mesh is used. The method of artificial compressibility and the time dependent method are used for steady state solutions. Numerical results are compared with experimental data.

An efficient implementation of the semi-implicit discontinuous Galerkin method for compressible flow simulation

Dolejší, Vít

Similarity:

We deal with a numerical simulation of the inviscid compressible flow with the aid of the combination of the discontinuous Galerkin method (DGM) and backward difference formulae. We recall the mentioned numerical scheme and discuss implementation aspects of DGM, particularly a choice of basis functions and numerical quadratures for integrations. An illustrative numerical example is presented.

Finite element method on 3D mesh with layer structure - application on flow and transport in porous media

Hokr, Milan, Wasserbauer, Vladimír

Similarity:

We introduce a formulation of the finite element method (FEM) adapted to typical geometry of groundwater problems. The three-dimensional domain is discretized in the following way: the projection to the horizontal plane is a triangulation (unstructured mesh) and the mesh is composed of layers in the space. Thus there is need to define finite elements on trilateral prims. We show an alternative numerical solution of porous media (potential) flow by means of combining the FEM on 2D triangle...