Displaying similar documents to “On finite element approximation of flow induced vibration of elastic structure”

On fully developed flows of fluids with a pressure dependent viscosity in a pipe

Macherla Vasudevaiah, Kumbakonam R. Rajagopal (2005)

Applications of Mathematics

Similarity:

Stokes recognized that the viscosity of a fluid can depend on the normal stress and that in certain flows such as flows in a pipe or in channels under normal conditions, this dependence can be neglected. However, there are many other flows, which have technological significance, where the dependence of the viscosity on the pressure cannot be neglected. Numerous experimental studies have unequivocally shown that the viscosity depends on the pressure, and that this dependence can be quite...

Numerical approximation of flow in a symmetric channel with vibrating walls

Sváček, Petr, Horáček, Jaromír

Similarity:

In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by stabilized finite element method is used. The motion of the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian (ALE) method. The time-space problem is solved with the aid of multigrid method. The method is applied onto a problem of interaction...

Numerical simulation of a pulsatile flow through a flexible channel

Cornel Marius Murea (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

An algorithm for approximation of an unsteady fluid-structure interaction problem is proposed. The fluid is governed by the Navier-Stokes equations with boundary conditions on pressure, while for the structure a particular plate model is used. The algorithm is based on the modal decomposition and the Newmark Method for the structure and on the Arbitrary Lagrangian Eulerian coordinates and the Finite Element Method for the fluid. In this paper, the continuity of the stresses at the...

1D dynamics of a second-grade viscous fluid in a constricted tube

Fernando Carapau, Adélia Sequeira (2008)

Banach Center Publications

Similarity:

Using a one-dimensional hierarchical model based on the Cosserat theory approach to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations depending on time and on a single spatial variable. From this new system we obtain the steady relationship between average pressure gradient and volume flow rate over a finite section of a straight constricted tube, and...

Shear flows of a new class of power-law fluids

Christiaan Le Roux, Kumbakonam R. Rajagopal (2013)

Applications of Mathematics

Similarity:

We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be non-monotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application...

On using artificial compressibility method for solving turbulent flows

Louda, Petr, Kozel, Karel, Příhoda, Jaromír

Similarity:

In this work, artificial compressibility method is used to solve steady and unsteady flows of viscous incompressible fluid. The method is based on implicit higher order upwind discretization of Navier-Stokes equations. The extension for unsteady simulation is considered by increasing artificial compressibility parameter or by using dual time stepping. The methods are tested on laminar flow around circular cylinder and used to simulate turbulent unsteady flows by URANS approach. The simulated...