Displaying similar documents to “About tests of the “simplifying” assumption for conditional copulas”

A copula test space model how to avoid the wrong copula choice

Frederik Michiels, Ann De Schepper (2008)

Kybernetika

Similarity:

We introduce and discuss the test space problem as a part of the whole copula fitting process. In particular, we explain how an efficient copula test space can be constructed by taking into account information about the existing dependence, and we present a complete overview of bivariate test spaces for all possible situations. The practical use will be illustrated by means of a numerical application based on an illustrative portfolio containing the S&P 500 Composite Index, the JP...

A simple non-parametric goodness-of-fit test for elliptical copulas

Miriam Jaser, Stephan Haug, Aleksey Min (2017)

Dependence Modeling

Similarity:

In this paper, we propose a simple non-parametric goodness-of-fit test for elliptical copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins. Nominal level and power of the proposed test are investigated in a Monte Carlo study. An empirical application illustrates our goodness-of-fit test at work.

New estimates and tests of independence in semiparametric copula models

Salim Bouzebda, Amor Keziou (2010)

Kybernetika

Similarity:

We introduce new estimates and tests of independence in copula models with unknown margins using φ -divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of χ 2 -divergence has good properties in terms of efficiency-robustness.

Constructing copulas by means of pairs of order statistics

Ali Dolati, Manuel Úbeda-Flores (2009)

Kybernetika

Similarity:

In this paper, we introduce two transformations on a given copula to construct new and recover already-existent families. The method is based on the choice of pairs of order statistics of the marginal distributions. Properties of such transformations and their effects on the dependence and symmetry structure of a copula are studied.