Displaying similar documents to “Strong edge geodetic problem in networks”

A Sharp Lower Bound For The Generalized 3-Edge-Connectivity Of Strong Product Graphs

Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The generalized k-connectivity κk(G) of a graph G, mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λG(S) | S ⊆ V (G) and |S| = k}, where λG(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper we...

The edge geodetic number and Cartesian product of graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained...

Local dependency in networks

Miloš Kudělka, Šárka Zehnalová, Zdeněk Horák, Pavel Krömer, Václav Snášel (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis focuses on the relations among the nodes exploring the properties of each network. We introduce a method for measuring the strength of the relationship between two nodes of a network and for their ranking. This method is applicable to all kinds of networks, including directed and weighted networks. The approach extracts dependency relations among the network's nodes...

Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs

Yuefang Sun (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The generalized k-connectivity κk(G) of a graph G was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λ(S) : S ⊆ V (G) and |S| = k}, where λ(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper, we study the generalized edge- connectivity of product graphs and obtain sharp...

Graphs with Large Generalized (Edge-)Connectivity

Xueliang Li, Yaping Mao (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The generalized k-connectivity κk(G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λk(G). In this paper, graphs of order n such that [...] for even k are characterized.

Some graphic uses of an even number of odd nodes

Kathie Cameron, Jack Edmonds (1999)

Annales de l'institut Fourier

Similarity:

Vertex-degree parity in large implicit “exchange graphs” implies some EP theorems asserting the existence of a second object without evidently providing a polytime algorithm for finding a second object.

On edge detour graphs

A.P. Santhakumaran, S. Athisayanathan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For two vertices u and v in a graph G = (V,E), the detour distance D(u,v) is the length of a longest u-v path in G. A u-v path of length D(u,v) is called a u-v detour. A set S ⊆V is called an edge detour set if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number dn₁(G) of G is the minimum order of its edge detour sets and any edge detour set of order dn₁(G) is an edge detour basis of G. A connected graph G is called an edge detour graph if it has...