Displaying similar documents to “Relative dielectric constants and selectivity ratios in open ionic channels”

Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

Jinn-Liang Liu, Dexuan Xie, Bob Eisenberg (2017)

Molecular Based Mathematical Biology

Similarity:

We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation...

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

Modification of Bikerman model with specific ion sizes

Tzyy-Leng Horng, Ping-Hsuan Tsai, Tai-Chia Lin (2017)

Molecular Based Mathematical Biology

Similarity:

Classical Poisson-Boltzman and Poisson-Nernst-Planck models can only work when ion concentrations are very dilute, which often mismatches experiments. Researchers have been working on the modification to include finite-size effect of ions, which is non-negelible when ion concentrations are not dilute. One of modified models with steric effect is Bikerman model, which is rather popular nowadays. It is based on the consideration of ion size by putting additional entropy term for solvent...

Raman laser: mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Geometric singular approach to Poisson-Nernst-Planck models with excess chemical potentials: Ion size effects on individual fluxes

Mingji Zhang, Jianbao Zhang, Daniel Acheampong (2017)

Molecular Based Mathematical Biology

Similarity:

We study a quasi-one-dimensional steady-state Poisson-Nernst-Planck model for ionic flows through membrane channels. Excess chemical potentials are included in this work to account for finite ion size effects. This is the main difference from the classical Poisson-Nernst-Planck models, which treat ion species as point charges and neglect ion-to-ion interactions. Due to the fact that most experiments (with some exceptions) can only measure the total current while individual fluxes contain...

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

Compound Compound Poisson Risk Model

Minkova, Leda D. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 60K10, 62P05. The compound Poisson risk models are widely used in practice. In this paper the counting process in the insurance risk model is a compound Poisson process. The model is called Compound Compound Poisson Risk Model. Some basic properties and ruin probability are given. We analyze the model under the proportional reinsurance. The optimal retention level and the corresponding adjustment coefficient are obtained. The particular...

Compartmental Models of Migratory Dynamics

J. Knisley, T. Schmickl, I. Karsai (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with. Fortunately, there are many significant biological systems that are amenable to linear compartmental...

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Weihua Geng (2015)

Molecular Based Mathematical Biology

Similarity:

Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement...

A continuous-time model for claims reserving

T. Rolski, A. Tomanek (2014)

Applicationes Mathematicae

Similarity:

Prediction of outstanding liabilities is an important problem in non-life insurance. In the framework of the Solvency II Project, the best estimate must be derived by well defined probabilistic models properly calibrated on the relevant claims experience. A general model along these lines was proposed earlier by Norberg (1993, 1999), who suggested modelling claim arrivals and payment streams as a marked point process. In this paper we specify that claims occur in [0,1] according to a...