Displaying similar documents to “On Roots of Polynomials and Algebraically Closed Fields”

Some Algebraic Properties of Polynomial Rings

Christoph Schwarzweller, Artur Korniłowicz (2016)

Formalized Mathematics

Similarity:

In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/ is isomorphic to the field of polynomials with degree smaller than the one of p.

On Fully Split Lacunary Polynomials in Finite Fields

Khodakhast Bibak, Igor E. Shparlinski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We estimate the number of possible degree patterns of k-lacunary polynomials of degree t < p which split completely modulo p. The result is based on a combination of a bound on the number of zeros of lacunary polynomials with some graph theory arguments.

Comments on the height reducing property

Shigeki Akiyama, Toufik Zaimi (2013)

Open Mathematics

Similarity:

A complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one,...

Reciprocal Stern Polynomials

A. Schinzel (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A partial answer is given to a problem of Ulas (2011), asking when the nth Stern polynomial is reciprocal.

Integer Linear Programming applied to determining monic hyperbolic irreducible polynomials with integer coefficients and span less than 4

Souad El Otmani, Armand Maul, Georges Rhin, Jean-Marc Sac-Épée (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this work, we propose a new method to find monic irreducible polynomials with integer coefficients, only real roots, and span less than 4. The main idea is to reduce the search of such polynomials to the solution of Integer Linear Programming problems. In this frame, the coefficients of the polynomials we are looking for are the integer unknowns. We give inequality constraints specified by the properties that the polynomials should have, such as the typical distribution of their roots....