Displaying similar documents to “Surfaces with non-zero normal curvature tensor”

Surfaces with non-zero normal curvature tensor

Antonio Carlos Asperti, Dirk Ferus, Lucio Rodriguez (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Studiamo la topologia differenziale e la geometria delle superfici compatte con curvatura normale non-nulla in spazio della curvatura costante.

On the Regularity of Alexandrov Surfaces with Curvature Bounded Below

Luigi Ambrosio, Jérôme Bertrand (2016)

Analysis and Geometry in Metric Spaces

Similarity:

In this note, we prove that on a surface with Alexandrov’s curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W1,p out of a discrete singular set. This result is based on Reshetnyak’s work on the more general class of surfaces with bounded integral curvature.

The PDE describing constant mean curvature surfaces

Hongyou Wu (2001)

Mathematica Bohemica

Similarity:

We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations.

Extended Derdziński-Shen theorem for curvature tensors

Carlo Alberto Mantica, Luca Guido Molinari (2012)

Colloquium Mathematicae

Similarity:

We extend a remarkable theorem of Derdziński and Shen, on the restrictions imposed on the Riemann tensor by the existence of a nontrivial Codazzi tensor. We show that the Codazzi equation can be replaced by a more general algebraic condition. The resulting extension applies both to the Riemann tensor and to generalized curvature tensors.