Displaying similar documents to “Synthesis of stochastic optimal control for a convex optimization problem in Hilbert spaces”

Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality

N.U. Ahmed (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we consider the question of optimal control for a class of stochastic evolution equations on infinite dimensional Hilbert spaces with controls appearing in both the drift and the diffusion operators. We consider relaxed controls (measure valued random processes) and briefly present some results on the question of existence of mild solutions including their regularity followed by a result on existence of partially observed optimal relaxed controls. Then we develop the necessary...

Optimal control of general McKean-Vlasov stochastic evolution equations on Hilbert spaces and necessary conditions of optimality

N.U. Ahmed (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we consider controlled McKean-Vlasov stochastic evolution equations on Hilbert spaces. We prove existence and uniqueness of solutions and regularity properties thereof. We use relaxed controls, adapted to a current of sub-sigma algebras generated by observable processes, and taking values from a Polish space. We introduce an appropriate topology based on weak star convergence. We prove continuous dependence of solutions on controls with respect to appropriate topologies....

A relaxation theorem for partially observed stochastic control on Hilbert space

N.U. Ahmed (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we present a result on relaxability of partially observed control problems for infinite dimensional stochastic systems in a Hilbert space. This is motivated by the fact that measure valued controls, also known as relaxed controls, are difficult to construct practically and so one must inquire if it is possible to approximate the solutions corresponding to measure valued controls by those corresponding to ordinary controls. Our main result is the relaxation theorem which...

On the well-posedness of some optimal control problems

Augusto Visintin (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si considerano problemi di controllo ottimale con una dipendenza non lineare tra il controllo e lo stato. Si mostra come in certi casi la continuità di tale dipendenza, quindi la buona posizione nel senso di Tychonov, è connessa alla forma del funzionale costo. In particolare si esamina un problema di Stefan a due fasi con controllo distribuito nel termine di sorgente.

Maximum principle for optimal control of fully coupled forward-backward stochastic differential delayed equations

Jianhui Huang, Jingtao Shi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper deals with the optimal control problem in which the controlled system is described by a fully coupled anticipated forward-backward stochastic differential delayed equation. The maximum principle for this problem is obtained under the assumption that the diffusion coefficient does not contain the control variables and the control domain is not necessarily convex. Both the necessary and sufficient conditions of optimality are proved. As illustrating examples, two kinds of linear...

Optimal control of ∞-dimensional stochastic systems via generalized solutions of HJB equations

N.U. Ahmed (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we consider optimal feedback control for stochastc infinite dimensional systems. We present some new results on the solution of associated HJB equations in infinite dimensional Hilbert spaces. In the process, we have also developed some new mathematical tools involving distributions on Hilbert spaces which may have many other interesting applications in other fields. We conclude with an application to optimal stationary feedback control.

On the well-posedness of some optimal control problems

Augusto Visintin (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si considerano problemi di controllo ottimale con una dipendenza non lineare tra il controllo e lo stato. Si mostra come in certi casi la continuità di tale dipendenza, quindi la buona posizione nel senso di Tychonov, è connessa alla forma del funzionale costo. In particolare si esamina un problema di Stefan a due fasi con controllo distribuito nel termine di sorgente.

The linear-quadratic optimal control problem for delay differential equations

Gabriella Di Blasio (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.

Partially observed optimal controls of forward-backward doubly stochastic systems

Yufeng Shi, Qingfeng Zhu (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The partially observed optimal control problem is considered for forward-backward doubly stochastic systems with controls entering into the diffusion and the observation. The maximum principle is proven for the partially observable optimal control problems. A probabilistic approach is used, and the adjoint processes are characterized as solutions of related forward-backward doubly stochastic differential equations in finite-dimensional spaces. Then, our theoretical result is applied...

Maximum principle for forward-backward doubly stochastic control systems and applications

Liangquan Zhang, Yufeng Shi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short)....

On capital allocation for stochastic arrangement increasing actuarial risks

Xiaoqing Pan, Xiaohu Li (2017)

Dependence Modeling

Similarity:

This paper studies the increasing convex ordering of the optimal discounted capital allocations for stochastic arrangement increasing risks with stochastic arrangement decreasing occurrence times. The application to optimal allocation of policy limits is presented as an illustration as well.

Maximum principle for forward-backward doubly stochastic control systems and applications

Liangquan Zhang, Yufeng Shi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short)....

A multidimensional singular stochastic control problem on a finite time horizon

Marcin Boryc, Łukasz Kruk (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

A singular stochastic control problem in n dimensions with timedependent coefficients on a finite time horizon is considered. We show that the value function for this problem is a generalized solution of the corresponding HJB equation with locally bounded second derivatives with respect to the space variables and the first derivative with respect to time. Moreover, we prove that an optimal control exists and is unique.

Optimal investment under stochastic volatility and power type utility function

Benchaabane, Abbes, Benchettah, Azzedine (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20. In this work we will study a problem of optimal investment in financial markets with stochastic volatility with small parameter. We used the averaging method of Bogoliubov for limited development for the optimal strategies when the small parameter of the model tends to zero and the limit for the optimal strategy and demonstrated the convergence of these optimal strategies.

Research problems of Jerzy Zabczyk

Szymon Peszat, Łukasz Stettner (2015)

Banach Center Publications

Similarity:

In the paper we present a selected variety of problems studied by Professor Jerzy Zabczyk. Important part of Prof. Zabczyk's scientific activity was devoted to his PhD students. He has promoted 9 PhD students: Tomasz Bielecki, Jarosław Sobczyk, Łukasz Stettner and Gianmario Tessitore work mostly in control and its applications to mathematical finance, whereas the research of Anna Chojnowska-Michalik, Wojciech Jachimiak, Anna Milian, Szymon Peszat and Anna Rusinek is concentrated mostly...

A multidimensional singular stochastic control problem on a finite time horizon

Marcin Boryc, Łukasz Kruk (2015)

Annales UMCS, Mathematica

Similarity:

A singular stochastic control problem in n dimensions with timedependent coefficients on a finite time horizon is considered. We show that the value function for this problem is a generalized solution of the corresponding HJB equation with locally bounded second derivatives with respect to the space variables and the first derivative with respect to time. Moreover, we prove that an optimal control exists and is unique

A Riccati equation arising in a boundary control problem for distributed parameters

Franco Flandoli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si prova resistenza locale della soluzione di una equazione di Riccati che si incontra in un problema di controllo ottimale. In ipotesi di regolarità per il costo si prova resistenza globale. Il problema astratto considerato è il modello di alcuni problemi di controllo ottimale governati da equazioni paraboliche con controllo sulla frontiera.