Displaying similar documents to “Partial decoupling of non-minimum phase systems by constant state feedback”

Closed-loop structure of decouplable linear multivariable systems

Javier Ruiz, Jorge Luis Orozco, Ofelia Begovich (2005)

Kybernetika

Similarity:

Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling...

Zeros in linear systems with time delay in state

Jerzy Tokarzewski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The concept of invariant zeros in a linear time-invariant system with state delay is considered. In the state-space framework, invariant zeros are treated as triples: complex number, nonzero state-zero direction, input-zero direction. Such a treatment is strictly related to the output-zeroing problem and in that spirit the zeros can be easily interpreted. The problem of zeroing the system output is discussed. For systems of uniform rank, the first nonzero Markov parameter comprises a...

Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case

Taha H. S. Abdelaziz, Michael Valášek (2005)

Kybernetika

Similarity:

This paper deals with the direct solution of the pole placement problem by state-derivative feedback for multi- input linear systems. The paper describes the solution of this pole placement problem for any controllable system with nonsingular system matrix and nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results into a formula similar to Ackermann one. Its derivation is based on the transformation...