Measures on Product Spaces and the Existence of Strong Baire Liftings.
S. Grekas, C. Gryllakis (1992)
Monatshefte für Mathematik
Similarity:
S. Grekas, C. Gryllakis (1992)
Monatshefte für Mathematik
Similarity:
Michael Rapoport (2001-2002)
Séminaire Bourbaki
Similarity:
Oort, Frans, Zink, Thomas (2002)
Documenta Mathematica
Similarity:
Robert E. Zink (1959)
Monatshefte für Mathematik
Similarity:
David Buhagiar, Emmanuel Chetcuti, Anatolij Dvurečenskij (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
It is shown that Čech completeness, ultracompleteness and local compactness can be defined by demanding that certain equivalences hold between certain classes of Baire measures or by demanding that certain classes of Baire measures have non-empty support. This shows that these three topological properties are measurable, similarly to the classical examples of compact spaces, pseudo-compact spaces and realcompact spaces.
Ernst-Wilhelm Zink (1992)
Journal für die reine und angewandte Mathematik
Similarity:
Colmez, Pierre (1998)
Documenta Mathematica
Similarity:
Ernst-Wilhelm Zink (1988)
Journal für die reine und angewandte Mathematik
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
Pandelis Dodos (2003)
Colloquium Mathematicae
Similarity:
Various ordinal ranks for Baire-1 real-valued functions, which have been used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1 multifunction is from being upper semicontinuous.
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
Ryszard Frankiewicz, Kenneth Kunen (1987)
Fundamenta Mathematicae
Similarity: