On a K. M. Garg's problem in respect to Darboux functions
Pawlak, Ryszard J (2015-12-13T08:53:36Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Pawlak, Ryszard J (2015-12-13T08:53:36Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Muthuvel, Kandasamy (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity:
K. M. Garg (1973)
Colloquium Mathematicae
Similarity:
Korobkov, M.V. (2000)
Siberian Mathematical Journal
Similarity:
Józef Banaś, Wagdy Gomaa El-Sayed (1995)
Mathematica Slovaca
Similarity:
Małgorzata Fedor, Joanna Szyszkowska (2008)
Annales UMCS, Mathematica
Similarity:
In this paper we consider the Darboux type properties for the paratingent. We review some of the standard facts on the multivalued functions and the paratingent. We prove that the paratingent has always the Darboux property but the property D* holds only when the paratingent is a multivalued function.
B. Palczewski, W. Pawelski (1964)
Annales Polonici Mathematici
Similarity:
Jack Ceder (1976)
Fundamenta Mathematicae
Similarity:
A. Bruckner, J. Ceder, T. Pearson (1973)
Fundamenta Mathematicae
Similarity:
Aleksander Maliszewski (2002)
Fundamenta Mathematicae
Similarity:
We consider the following problem: Characterize the pairs ⟨A,B⟩ of subsets of ℝ which can be separated by a function from a given class, i.e., for which there exists a function f from that class such that f = 0 on A and f = 1 on B (the classical separation property) or f < 0 on A and f > 0 on B (a new separation property).