The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Comparison Principles for Subelliptic Equations of Monge-Ampère Type”

Matrix inequalities and the complex Monge-Ampère operator

Jonas Wiklund (2004)

Annales Polonici Mathematici

Similarity:

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.

The complex Monge-Ampère operator in the Cegrell classes

Rafał Czyż

Similarity:

The complex Monge-Ampère operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kähler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampère operator.

The Dirichlet problem for the degenerate Monge-Ampère equation.

Luis A. Caffarelli, Louis Nirenberg, Joel Spruck (1986)

Revista Matemática Iberoamericana

Similarity:

Let Ω be a bounded convex domain in Rn with smooth, strictly convex boundary ∂Ω, i.e. the principal curvatures of ∂Ω are all positive. We study the problem of finding a convex function u in Ω such that: det (uij) = 0 in Ω u = φ given on ∂Ω.

A decomposition of complex Monge-Ampère measures

Yang Xing (2007)

Annales Polonici Mathematici

Similarity:

We prove a decomposition theorem for complex Monge-Ampère measures of plurisubharmonic functions in connection with their pluripolar sets.