Displaying similar documents to “A note to a bifurcation result of H. Kielhöfer for the wave equation”

Bifurcation of free vibrations for completely resonant wave equations

Massimiliano Berti, Philippe Bolle (2004)

Bollettino dell'Unione Matematica Italiana

Similarity:

We prove existence of small amplitude, 2p/v-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency ω belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Nonlinear vibrations of completely resonant wave equations

Massimiliano Berti (2007)

Banach Center Publications

Similarity:

We present recent existence results of small amplitude periodic and quasi-periodic solutions of completely resonant nonlinear wave equations. Both infinite-dimensional bifurcation phenomena and small divisors difficulties occur. The proofs rely on bifurcation theory, Nash-Moser implicit function theorems, dynamical systems techniques and variational methods.

Bifurcations in a modulation equation for alternans in a cardiac fiber

Shu Dai, David G. Schaeffer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

While alternans in a single cardiac cell appears through a simple period-doubling bifurcation, in extended tissue the exact nature of the bifurcation is unclear. In particular, the phase of alternans can exhibit wave-like spatial dependence, either stationary or travelling, which is known as alternans. We study these phenomena in simple cardiac models through a modulation equation proposed by Echebarria-Karma. As shown in our previous paper, the zero solution of their equation may...