Displaying similar documents to “Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems”

Two constant sign solutions for a nonhomogeneous Neumann boundary value problem

Liliana Klimczak (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

We consider a nonlinear Neumann problem with a nonhomogeneous elliptic differential operator. With some natural conditions for its structure and some general assumptions on the growth of the reaction term we prove that the problem has two nontrivial solutions of constant sign. In the proof we use variational methods with truncation and minimization techniques.

An Elliptic Neumann Problem with Subcritical Nonlinearity

Jan Chabrowski, Kyril Tintarev (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We establish the existence of a solution to the Neumann problem in the half-space with a subcritical nonlinearity on the boundary. Solutions are obtained through the constrained minimization or minimax. The existence of solutions depends on the shape of a boundary coefficient.

The Behaviour of Weak Solutions of Boundary Value Problems for Linear Elliptic Second Order Equations in Unbounded Cone-Like Domains

Damian Wiśniewski (2016)

Annales Mathematicae Silesianae

Similarity:

We investigate the behaviour of weak solutions of boundary value problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence second order equations in domains extending to infinity along a cone. We find an exponent of the solution decreasing rate: we derive the estimate of the weak solution modulus for our problems near the infinity under assumption that leading coefficients of the equations do not satisfy the Dini-continuity condition.

Weak compactness of solutions for fourth order elliptic systems with critical growth

Paweł Goldstein, Paweł Strzelecki, Anna Zatorska-Goldstein (2013)

Studia Mathematica

Similarity:

We consider a class of fourth order elliptic systems which include the Euler-Lagrange equations of biharmonic mappings in dimension 4 and we prove that a weak limit of weak solutions to such systems is again a weak solution to a limit system.