Displaying similar documents to “Modeling of the temperature distribution of a greenhouse using finite element differential neural networks”

Neural networks using Bayesian training

Gabriela Andrejková, Miroslav Levický (2003)

Kybernetika

Similarity:

Bayesian probability theory provides a framework for data modeling. In this framework it is possible to find models that are well-matched to the data, and to use these models to make nearly optimal predictions. In connection to neural networks and especially to neural network learning, the theory is interpreted as an inference of the most probable parameters for the model and the given training data. This article describes an application of Neural Networks using the Bayesian training...

A heuristic forecasting model for stock decision making.

D. Zhang, Q. Jiang, X. Li (2005)

Mathware and Soft Computing

Similarity:

This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. The forecasting...

Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network

Maciej Huk (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper the Sigma-if artificial neural network model is considered, which is a generalization of an MLP network with sigmoidal neurons. It was found to be a potentially universal tool for automatic creation of distributed classification and selective attention systems. To overcome the high nonlinearity of the aggregation function of Sigma-if neurons, the training process of the Sigma-if network combines an error backpropagation algorithm with the self-consistency paradigm widely...