Displaying similar documents to “Unique solvability and stability analysis of a generalized particle method for a Poisson equation in discrete Sobolev norms”

Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

Jinn-Liang Liu, Dexuan Xie, Bob Eisenberg (2017)

Molecular Based Mathematical Biology

Similarity:

We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation...

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Weihua Geng (2015)

Molecular Based Mathematical Biology

Similarity:

Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement...

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

Collision probabilities in the rarefaction fan of asymmetric exclusion processes

Pablo A. Ferrari, Patricia Gonçalves, James B. Martin (2009)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate ∈(1/2, 1] and to the left at rate 1−, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose...

Probabilistic Interpretation for the Nonlinear Poisson-Boltzmann Equation in Molecular Dynamics

Nicolas Perrin (2012)

ESAIM: Proceedings

Similarity:

The Poisson-Boltzmann (PB) equation describes the electrostatic potential of a biomolecular system composed by a molecule in a solvent. The electrostatic potential is involved in biomolecular models which are used in molecular simulation. In consequence, finding an efficient method to simulate the numerical solution of PB equation is very useful. As a first step, we establish in this paper a probabilistic interpretation of the nonlinear PB equation with Backward Stochastic Differential...