Displaying similar documents to “DG method for pricing European options under Merton jump-diffusion model”

DG method for numerical pricing of multi-asset Asian options—the case of options with floating strike

Jiří Hozman, Tomáš Tichý (2017)

Applications of Mathematics

Similarity:

Option pricing models are an important part of financial markets worldwide. The PDE formulation of these models leads to analytical solutions only under very strong simplifications. For more general models the option price needs to be evaluated by numerical techniques. First, based on an ideal pure diffusion process for two risky asset prices with an additional path-dependent variable for continuous arithmetic average, we present a general form of PDE for pricing of Asian option contracts...

DG method for the numerical pricing of two-asset European-style Asian options with fixed strike

Jiří Hozman, Tomáš Tichý (2017)

Applications of Mathematics

Similarity:

The evaluation of option premium is a very delicate issue arising from the assumptions made under a financial market model, and pricing of a wide range of options is generally feasible only when numerical methods are involved. This paper is based on our recent research on numerical pricing of path-dependent multi-asset options and extends these results also to the case of Asian options with fixed strike. First, we recall the three-dimensional backward parabolic PDE describing the evolution...

Option valuation under the VG process by a DG method

Jiří Hozman, Tomáš Tichý (2021)

Applications of Mathematics

Similarity:

The paper presents a discontinuous Galerkin method for solving partial integro-differential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical...

Numerical solution of a new hydrodynamic model of flocking

Kučera, Václav, Živčáková, Andrea

Similarity:

This work is concerned with the numerical solution of a hydrodynamic model of the macroscopic behavior of flocks of birds due to Fornasier et al., 2011. The model consists of the compressible Euler equations with an added nonlocal, nonlinear right-hand side. As noticed by the authors of the model, explicit time schemes are practically useless even on very coarse grids in 1D due to the nonlocal nature of the equations. To this end, we apply a semi-implicit discontinuous Galerkin method...

Valuing barrier options using the adaptive discontinuous Galerkin method

Hozman, Jiří

Similarity:

This paper is devoted to barrier options and the main objective is to develop a sufficiently robust, accurate and efficient method for computation of their values driven according to the well-known Black-Scholes equation. The main idea is based on the discontinuous Galerkin method together with a spatial adaptive approach. This combination seems to be a promising technique for the solving of such problems with discontinuous solutions as well as for consequent optimization of the number...

A comparison of coupled and uncoupled solvers for the cardiac Bidomain model

P. Colli Franzone, L. F. Pavarino, S. Scacchi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this work is to compare a new uncoupled solver for the cardiac Bidomain model with a usual coupled solver. The Bidomain model describes the bioelectric activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. This system models at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution...