Displaying similar documents to “Numerical solution of the pressing devices shape optimization problem in the glass industry”

Optimization of plunger cavity

Salač, Petr

Similarity:

In the contribution we present a problem of shape optimization of the cooling cavity of a plunger that is used in the forming process in the glass in dustry. A rotationally symmetric system of the mould, the glass piece, the plunger and the plunger cavity is considered. The state problem is given as a stationary heat conduction process. The system includes a heat source representing the glass piece that is cooled from inside by water flowing through the plunger cavity and from outside...

On two problems studied by A. Ambrosetti

David Arcoya, José Carmona (2006)

Journal of the European Mathematical Society

Similarity:

We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems.We prove for the first one the existence of a continuum of solutions with shape of a reflected C ( -shape). Next, we show that there is a relationship between these two problems.

Closed surfaces with different shapes that are indistinguishable by the SRNF

Eric Klassen, Peter W. Michor (2020)

Archivum Mathematicum

Similarity:

The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in 3 , and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of 3 . Thus, it induces a distance function on the shape space of immersions, i.e.,...

Shape optimization for a time-dependent model of a carousel press in glass production

Petr Salač, Jan Stebel (2019)

Applications of Mathematics

Similarity:

This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under...

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

Similarity:

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution...

Anisotropic functions : a genericity result with crystallographic implications

Victor J. Mizel, Alexander J. Zaslavski (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious...

Scaling limit and cube-root fluctuations in SOS surfaces above a wall

Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly, Fabio Lucio Toninelli (2016)

Journal of the European Mathematical Society

Similarity:

Consider the classical ( 2 + 1 ) -dimensional Solid-On-Solid model above a hard wall on an L × L box of 2 . The model describes a crystal surface by assigning a non-negative integer height η x to each site x in the box and 0 heights to its boundary. The probability of a surface configuration η is proportional to exp ( - β ( η ) ) , where β is the inverse-temperature and ( η ) sums the absolute values of height differences between neighboring sites. We give a full description of the shape of the SOS surface for low enough...

New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems

Youcef Elhamam Hemici, Samia Khelladi, Djamel Benterki (2024)

Kybernetika

Similarity:

The conjugate gradient method is one of the most effective algorithm for unconstrained nonlinear optimization problems. This is due to the fact that it does not need a lot of storage memory and its simple structure properties, which motivate us to propose a new hybrid conjugate gradient method through a convex combination of β k R M I L and β k H S . We compute the convex parameter θ k using the Newton direction. Global convergence is established through the strong Wolfe conditions. Numerical experiments...