Displaying similar documents to “ 0 - 1 sequences having the same numbers of ( 1 - 1 ) -couples of given distances”

Discrepancy estimates for some linear generalized monomials

Roswitha Hofer, Olivier Ramaré (2016)

Acta Arithmetica

Similarity:

We consider sequences modulo one that are generated using a generalized polynomial over the real numbers. Such polynomials may also involve the integer part operation [·] additionally to addition and multiplication. A well studied example is the (nα) sequence defined by the monomial αx. Their most basic sister, ( [ n α ] β ) n 0 , is less investigated. So far only the uniform distribution modulo one of these sequences is resolved. Completely new, however, are the discrepancy results proved in this paper....

Nonreciprocal algebraic numbers of small Mahler's measure

Artūras Dubickas, Jonas Jankauskas (2013)

Acta Arithmetica

Similarity:

We prove that there exist at least cd⁵ monic irreducible nonreciprocal polynomials with integer coefficients of degree at most d whose Mahler measures are smaller than 2, where c is some absolute positive constant. These polynomials are constructed as nonreciprocal divisors of some Newman hexanomials 1 + x r + + x r , where the integers 1 ≤ r₁ < ⋯ < r₅ ≤ d satisfy some restrictions including 2 r j < r j + 1 for j = 1,2,3,4. This result improves the previous lower bound cd³ and seems to be closer to the correct...

A formula for Jack polynomials of the second order

Francisco J. Caro-Lopera, José A. Díaz-García, Graciela González-Farías (2007)

Applicationes Mathematicae

Similarity:

This work solves the partial differential equation for Jack polynomials C κ α of the second order. When the parameter α of the solution takes the values 1/2, 1 and 2 we get explicit formulas for the quaternionic, complex and real zonal polynomials of the second order, respectively.

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

On blocks of arithmetic progressions with equal products

N. Saradha (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

Let f ( X ) [ X ] be a monic polynomial which is a power of a polynomial g ( X ) [ X ] of degree μ 2 and having simple real roots. For given positive integers d 1 , d 2 , , m with &lt; m and gcd ( , m ) = 1 with μ m + 1 whenever m &lt; 2 , we show that the equation f ( x ) f ( x + d 1 ) f ( x + ( k - 1 ) d 1 ) = f ( y ) f ( y + d 2 ) f ( y + ( m k - 1 ) d 2 ) with f ( x + j d 1 ) 0 for 0 j &lt; k has only finitely many solutions in integers x , y and k 1 except in the case m = μ = 2 , = k = d 2 = 1 , f ( X ) = g ( X ) , x = f ( y ) + y .

On realizability of sign patterns by real polynomials

Vladimir Kostov (2018)

Czechoslovak Mathematical Journal

Similarity:

The classical Descartes’ rule of signs limits the number of positive roots of a real polynomial in one variable by the number of sign changes in the sequence of its coefficients. One can ask the question which pairs of nonnegative integers ( p , n ) , chosen in accordance with this rule and with some other natural conditions, can be the pairs of numbers of positive and negative roots of a real polynomial with prescribed signs of the coefficients. The paper solves this problem for degree 8 polynomials. ...

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

Deformed Heisenberg algebra with reflection and d -orthogonal polynomials

Fethi Bouzeffour, Hanen Ben Mansour, Ali Zaghouani (2017)

Czechoslovak Mathematical Journal

Similarity:

This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of d -orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when d = 1 . The underlying algebraic framework allowed a systematic...

A characterization of partition polynomials and good Bernoulli trial measures in many symbols

Andrew Yingst (2014)

Colloquium Mathematicae

Similarity:

Consider an experiment with d+1 possible outcomes, d of which occur with probabilities x , . . . , x d . If we consider a large number of independent occurrences of this experiment, the probability of any event in the resulting space is a polynomial in x , . . . , x d . We characterize those polynomials which arise as the probability of such an event. We use this to characterize those x⃗ for which the measure resulting from an infinite sequence of such trials is good in the sense of Akin.

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

Similarity:

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

Every compact set in 𝐂 n is a good compact set

Jan Erik Björk (1970)

Annales de l'institut Fourier

Similarity:

Let K be an compact subset of an open set V in C n . We show the existence of an open neighborhood U of K satisfying the following condition : if f is holomorphic in V and if there exists a sequence of polynomials which approximate f uniformly in some open neighborhood U f of K , there exists a sequence of polynomial which approximate f uniformly in U .

A generalisation of Amitsur's A-polynomials

Adam Owen, Susanne Pumplün (2021)

Communications in Mathematics

Similarity:

We find examples of polynomials f D [ t ; σ , δ ] whose eigenring ( f ) is a central simple algebra over the field F = C Fix ( σ ) Const ( δ ) .

Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif, Rachid Boumahdi, Tarek Garici (2021)

Communications in Mathematics

Similarity:

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.