Displaying similar documents to “Further results on the generalized cumulative entropy”

Symbolic extensions for nonuniformly entropy expanding maps

David Burguet (2010)

Colloquium Mathematicae

Similarity:

A nonuniformly entropy expanding map is any ¹ map defined on a compact manifold whose ergodic measures with positive entropy have only nonnegative Lyapunov exponents. We prove that a r nonuniformly entropy expanding map T with r > 1 has a symbolic extension and we give an explicit upper bound of the symbolic extension entropy in terms of the positive Lyapunov exponents by following the approach of T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].

The entropy conjecture for diffeomorphisms away from tangencies

Gang Liao, Marcelo Viana, Jiagang Yang (2013)

Journal of the European Mathematical Society

Similarity:

We prove that every C 1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously with the map. In contrast, generic diffeomorphisms with persistent tangencies are not entropy expansive. ...

Maličky-Riečan's entropy as a version of operator entropy

Bartosz Frej (2006)

Fundamenta Mathematicae

Similarity:

The paper deals with the notion of entropy for doubly stochastic operators. It is shown that the entropy defined by Maličky and Riečan in [MR] is equal to the operator entropy proposed in [DF]. Moreover, some continuity properties of the [MR] entropy are established.

Operator entropy inequalities

M. S. Moslehian, F. Mirzapour, A. Morassaei (2013)

Colloquium Mathematicae

Similarity:

We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341-348]. For two finite sequences A = (A₁,...,Aₙ) and B = (B₁,...,Bₙ) of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting S q f ( A | B ) : = j = 1 n A j 1 / 2 ( A j - 1 / 2 B j A j - 1 / 2 ) q f ( A j - 1 / 2 B j A j - 1 / 2 ) A j 1 / 2 , and then give upper and lower bounds for S q f ( A | B ) as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004),...

An integral formula for entropy of doubly stochastic operators

Bartosz Frej, Paulina Frej (2011)

Fundamenta Mathematicae

Similarity:

A new formula for entropy of doubly stochastic operators is presented. It is also checked that this formula fulfills the axioms of the axiomatic definition of operator entropy, introduced in an earlier paper of Downarowicz and Frej. As an application of the formula the 'product rule' is obtained, i.e. it is shown that the entropy of a product is the sum of the entropies of the factors. Finally, the proof of continuity of the new 'static' entropy as a function of the measure is given. ...

A local approach to g -entropy

Mehdi Rahimi (2015)

Kybernetika

Similarity:

In this paper, a local approach to the concept of g -entropy is presented. Applying the Choquet‘s representation Theorem, the introduced concept is stated in terms of g -entropy.

Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories

Paulina Frej (2012)

Colloquium Mathematicae

Similarity:

We define the space of trajectories of a doubly stochastic operator on L¹(X,μ) as a shift space ( X , ν , σ ) , where ν is a probability measure defined as in the Ionescu-Tulcea theorem and σ is the shift transformation. We study connections between the entropy of a doubly stochastic operator and the entropy of the shift on the space of trajectories of this operator.

Entropy pairs of ℤ² and their directional properties

Kyewon Koh Park, Uijung Lee (2004)

Studia Mathematica

Similarity:

Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.

A new approach to mutual information

Fumio Hiai, Dénes Petz (2007)

Banach Center Publications

Similarity:

A new expression as a certain asymptotic limit via "discrete micro-states" of permutations is provided for the mutual information of both continuous and discrete random variables.

Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao (2009)

Studia Mathematica

Similarity:

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,,ν,T) be a factor of a measure-theoretical dynamical system (X,,μ,T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence A ⊆ S such that h μ A ( T , ξ | ) = H μ ( ξ | ( X | Y ) ) for all finite partitions ξ, where (X|Y) is the Kronecker algebra over . A similar result holds for rigid algebras over . As an application, we characterize compact, rigid and mixing extensions via relative...

On the origin and development of some notions of entropy

Francisco Balibrea (2015)

Topological Algebra and its Applications

Similarity:

Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded...

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Similarity:

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.