Displaying similar documents to “Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods”

A general Hamilton-Jacobi framework for non-linear state-constrained control problems

Albert Altarovici, Olivier Bokanowski, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can...

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

A Hamilton-Jacobi approach to junction problems and application to traffic flows

Cyril Imbert, Régis Monneau, Hasnaa Zidani (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a “junction”, that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to...