Displaying similar documents to “Annihilator-preserving congruence relations in distributive nearlattices”

Quasitrivial semimodules. VI.

Tomáš Kepka, Petr Němec (2013)

Acta Universitatis Carolinae. Mathematica et Physica

Similarity:

The paper continues the investigation of quasitrivial semimodules and related problems. In particular, endomorphisms of semilattices are investigated.

On congruence distributivity of ordered algebras with constants

Krisztina Balog, Benedek Skublics (2011)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We define the order-congruence distributivity at 0 and order- congruence n-distributivity at 0 of ordered algebras with a nullary operation 0. These notions are generalizations of congruence distributivity and congruence n-distributivity. We prove that a class of ordered algebras with a nullary operation 0 closed under taking subalgebras and direct products is order-congruence distributive at 0 iff it is order-congruence n-distributive at 0. We also characterize such classes by a Mal'tsev...

Varieties satisfying the triangular scheme need not be congruence distributive

Ivan Chajda, Radomír Halaš (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A diagrammatic scheme characterizing congruence distributivity of congruence permutable algebras was introduced by the first author in 2001. It is known under the name Triangular Scheme. It is known that every congruence distributive algebra satisfies this scheme and an algebra satisfying the Triangular Scheme which is not congruence distributive was found by E. K. Horváth, G. Czédli and the autor in 2003. On the other hand, it was an open problem if a variety of algebras satisfying...

Congruence submodularity

Ivan Chajda, Radomír Halaš (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We present a countable infinite chain of conditions which are essentially weaker then congruence modularity (with exception of first two). For varieties of algebras, the third of these conditions, the so called 4-submodularity, is equivalent to congruence modularity. This is not true for single algebras in general. These conditions are characterized by Maltsev type conditions.