The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Semi-Heyting Algebras and Identities of Associative Type”

Semi-primal clusters

D. James Samuelson (1970)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

On semi-invariants of tilted algebras of type Aₙ

Witold Kraśkiewicz (2001)

Colloquium Mathematicae

Similarity:

We prove that for algebras obtained by tilts from the path algebras of equioriented Dynkin diagrams of type Aₙ, the rings of semi-invariants are polynomial.

The class of 2-dimensional neat reducts is not elementary

Tarek Sayed Ahmed (2002)

Fundamenta Mathematicae

Similarity:

SC, CA, QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras and Halmos' quasipolyadic algebras with equality, respectively. Generalizing a result of Andréka and Németi on cylindric algebras, we show that for K ∈ SC,QA,CA,QEA and any β > 2 the class of 2-dimensional neat reducts of β-dimensional algebras in K is not closed under forming elementary subalgebras, hence is not elementary. Whether this result extends...

The Sheffer stroke operation reducts of basic algebras

Tahsin Oner, Ibrahim Senturk (2017)

Open Mathematics

Similarity:

In this study, a term operation Sheffer stroke is presented in a given basic algebra 𝒜 and the properties of the Sheffer stroke reduct of 𝒜 are examined. In addition, we qualify such Sheffer stroke basic algebras. Finally, we construct a bridge between Sheffer stroke basic algebras and Boolean algebras.

q-Leibniz Algebras

Dzhumadil'daev, A. S. (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 17A32, Secondary 17D25. An algebra (A,ο) is called Leibniz if aο(bοc) = (a ο b)ο c-(a ο c) ο b for all a,b,c ∈ A. We study identities for the algebras A(q) = (A,οq), where a οq b = a ο b+q b ο a is the q-commutator. Let Char K ≠ 2,3. We show that the class of q-Leibniz algebras is defined by one identity of degree 3 if q2 ≠ 1, q ≠−2, by two identities of degree 3 if q = −2, and by the commutativity identity and one identity...