Displaying similar documents to “Empirical regression quantile processes”

Directional quantile regression in R

Pavel Boček, Miroslav Šiman (2017)

Kybernetika

Similarity:

Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation...

Note on universal algorithms for learning theory

Karol Dziedziul, Barbara Wolnik (2007)

Applicationes Mathematicae

Similarity:

We study the universal estimator for the regression problem in learning theory considered by Binev et al. This new approach allows us to improve their results.

Stacked regression with restrictions

Tomasz Górecki (2005)

Discussiones Mathematicae Probability and Statistics

Similarity:

When we apply stacked regression to classification we need only discriminant indices which can be negative. In many situations, we want these indices to be positive, e.g., if we want to use them to count posterior probabilities, when we want to use stacked regression to combining classification. In such situation, we have to use leastsquares regression under the constraint βₖ ≥ 0, k = 1,2,...,K. In their earlier work [5], LeBlanc and Tibshirani used an algorithm given in [4]. However,...

Smoothing dichotomy in randomized fixed-design regression with strongly dependent errors based on a moving average

Artur Bryk (2014)

Applicationes Mathematicae

Similarity:

We consider a fixed-design regression model with errors which form a Borel measurable function of a long-range dependent moving average process. We introduce an artificial randomization of grid points at which observations are taken in order to diminish the impact of strong dependence. We show that the Priestley-Chao kernel estimator of the regression fuction exhibits a dichotomous asymptotic behaviour depending on the amount of smoothing employed. Moreover, the resulting estimator is...

Directional quantile regression in Octave (and MATLAB)

Pavel Boček, Miroslav Šiman (2016)

Kybernetika

Similarity:

Although many words have been written about two recent directional (regression) quantile concepts, their applications, and the algorithms for computing associated (regression) quantile regions, their software implementation is still not widely available, which, of course, severely hinders the dissemination of both methods. Wanting to partly fill in the gap here, we provide all the codes needed for computing and plotting the multivariate (regression) quantile regions in Octave and MATLAB,...

Detecting atypical data in air pollution studies by using shorth intervals for regression

Cécile Durot, Karelle Thiébot (2010)

ESAIM: Probability and Statistics

Similarity:

To validate pollution data, subject-matter experts in Airpl (an organization that maintains a network of air pollution monitoring stations in western France) daily perform visual examinations of the data and check their consistency. In this paper, we describe these visual examinations and propose a formalization for this problem. The examinations consist in comparisons of so-called shorth intervals so we build a statistical test that compares such intervals in a nonparametric regression...

Adaptive trimmed likelihood estimation in regression

Tadeusz Bednarski, Brenton R. Clarke, Daniel Schubert (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper we derive an asymptotic normality result for an adaptive trimmed likelihood estimator of regression starting from initial high breakdownpoint robust regression estimates. The approach leads to quickly and easily computed robust and efficient estimates for regression. A highlight of the method is that it tends automatically in one algorithm to expose the outliers and give least squares estimates with the outliers removed. The idea is to begin with a rapidly computed consistent...

Selection in parametric models via some stepdown procedures

Konrad Furmańczyk (2014)

Applicationes Mathematicae

Similarity:

The paper considers the problem of consistent variable selection in parametic models with the use of stepdown multiple hypothesis procedures. Our approach completes the results of Bunea et al. [J. Statist. Plann. Inference 136 (2006)]. A simulation study supports the results obtained.

Some Diagnostic Tools in Robust Econometrics

Jan Kalina (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Highly robust statistical and econometric methods have been developed not only as a diagnostic tool for standard methods, but they can be also used as self-standing methods for valid inference. Therefore the robust methods need to be equipped by their own diagnostic tools. This paper describes diagnostics for robust estimation of parameters in two econometric models derived from the linear regression. Both methods are special cases of the generalized method of moments estimator based...

Generalized regression estimation for continuous time processes with values in functional spaces

Bertrand Maillot, Christophe Chesneau (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider two continuous time processes; the first one is valued in a semi-metric space, while the second one is real-valued. In some sense, we extend the results of F. Ferraty and P. Vieu in ``Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination'' (2004), by establishing the convergence, with rates, of the generalized regression function when a real-valued continuous time response is considered. As corollaries, we...

Graphical display in outlier diagnostics; adequacy and robustness.

Nethal K. Jajo (2005)

SORT

Similarity:

Outlier robust diagnostics (graphically) using Robustly Studentized Robust Residuals (RSRR) and Partial Robustly Studentized Robust Residuals (PRSRR) are established. One problem with some robust residual plots is that the residuals retain information from certain predicated values (Velilla, 1998). The RSRR and PRSRR techniques are unaffected by this complication and as a result they provide more interpretable results.

How to deal with regression models with a weak nonlinearity

Eva Tesaríková, Lubomír Kubáček (2001)

Discussiones Mathematicae Probability and Statistics

Similarity:

If a nonlinear regression model is linearized in a non-sufficient small neighbourhood of the actual parameter, then all statistical inferences may be deteriorated. Some criteria how to recognize this are already developed. The aim of the paper is to demonstrate the behaviour of the program for utilization of these criteria.