Displaying similar documents to “Hardy and Rellich type inequalities with remainders”

On Hardy spaces on worm domains

Alessandro Monguzzi (2016)

Concrete Operators

Similarity:

In this review article we present the problem of studying Hardy spaces and the related Szeg˝o projection on worm domains. We review the importance of the Diederich–Fornæss worm domain as a smooth bounded pseudoconvex domain whose Bergman projection does not preserve Sobolev spaces of sufficiently high order and we highlight which difficulties arise in studying the same problem for the Szeg˝o projection. Finally, we announce and discuss the results we have obtained so far in the setting...

Hardy-Poincaré type inequalities derived from p-harmonic problems

Iwona Skrzypczak (2014)

Banach Center Publications

Similarity:

We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.

Norm inequalities in weighted amalgam

Suket Kumar (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Hardy inequalities for the Hardy-type operators are characterized in the amalgam space which involves Banach function space and sequence space.

Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ

Marco M. Peloso, Hercule Valencourt (2010)

Colloquium Mathematicae

Similarity:

We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces p , k ( ) , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.