Displaying similar documents to “An algorithm for hybrid regularizers based image restoration with Poisson noise”

Raman laser: mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Compound Compound Poisson Risk Model

Minkova, Leda D. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 60K10, 62P05. The compound Poisson risk models are widely used in practice. In this paper the counting process in the insurance risk model is a compound Poisson process. The model is called Compound Compound Poisson Risk Model. Some basic properties and ruin probability are given. We analyze the model under the proportional reinsurance. The optimal retention level and the corresponding adjustment coefficient are obtained. The particular...

Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

Jinn-Liang Liu, Dexuan Xie, Bob Eisenberg (2017)

Molecular Based Mathematical Biology

Similarity:

We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation...

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

Probabilistic Interpretation for the Nonlinear Poisson-Boltzmann Equation in Molecular Dynamics

Nicolas Perrin (2012)

ESAIM: Proceedings

Similarity:

The Poisson-Boltzmann (PB) equation describes the electrostatic potential of a biomolecular system composed by a molecule in a solvent. The electrostatic potential is involved in biomolecular models which are used in molecular simulation. In consequence, finding an efficient method to simulate the numerical solution of PB equation is very useful. As a first step, we establish in this paper a probabilistic interpretation of the nonlinear PB equation with Backward Stochastic Differential...

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Weihua Geng (2015)

Molecular Based Mathematical Biology

Similarity:

Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement...

Modification of Bikerman model with specific ion sizes

Tzyy-Leng Horng, Ping-Hsuan Tsai, Tai-Chia Lin (2017)

Molecular Based Mathematical Biology

Similarity:

Classical Poisson-Boltzman and Poisson-Nernst-Planck models can only work when ion concentrations are very dilute, which often mismatches experiments. Researchers have been working on the modification to include finite-size effect of ions, which is non-negelible when ion concentrations are not dilute. One of modified models with steric effect is Bikerman model, which is rather popular nowadays. It is based on the consideration of ion size by putting additional entropy term for solvent...

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

An efficient algorithm for adaptive total variation based image decomposition and restoration

Xinwu Liu, Lihong Huang (2014)

International Journal of Applied Mathematics and Computer Science

Similarity:

With the aim to better preserve sharp edges and important structure features in the recovered image, this article researches an improved adaptive total variation regularization and H −1 norm fidelity based strategy for image decomposition and restoration. Computationally, for minimizing the proposed energy functional, we investigate an efficient numerical algorithm-the split Bregman method, and briefly prove its convergence. In addition, comparisons are also made with the classical OSV...

The Child–Langmuir limit for semiconductors: a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed...

Compartmental Models of Migratory Dynamics

J. Knisley, T. Schmickl, I. Karsai (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with. Fortunately, there are many significant biological systems that are amenable to linear compartmental...

Relative dielectric constants and selectivity ratios in open ionic channels

Bob Eisenberg, Weishi Liu (2017)

Molecular Based Mathematical Biology

Similarity:

We investigate the effects of the relative dielectric coefficient on ionic flows in open ion channels, using mathematical analysis of reasonably general Poisson-Nernst-Planck type models that can include the finite sizes of ions. The value of the relative dielectric coefficient is of course a crucial parameter for ionic behavior in general. Using the powerful theory of singularly perturbed problems in applied mathematics, we show that some properties of open channels are quite insensitive...

Segmentation of the Poisson and negative binomial rate models: a penalized estimator

Alice Cleynen, Emilie Lebarbier (2014)

ESAIM: Probability and Statistics

Similarity:

We consider the segmentation problem of Poisson and negative binomial (overdispersed Poisson) rate distributions. In segmentation, an important issue remains the choice of the number of segments. To this end, we propose a penalized -likelihood estimator where the penalty function is constructed in a non-asymptotic context following the works of L. Birgé and P. Massart. The resulting estimator is proved to satisfy an oracle inequality. The performances of our criterion is assessed using...

Computation of Biharmonic Poisson Kernel for the Upper Half Plane

Ali Abkar (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.