Displaying similar documents to “A convex treatment of numerical radius inequalities”

Numerical index with respect to an operator

Mohammad Ali Ardalani (2014)

Studia Mathematica

Similarity:

We introduce new concepts of numerical range and numerical radius of one operator with respect to another one, which generalize in a natural way the known concepts of numerical range and numerical radius. We study basic properties of these new concepts and present some examples.

The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ)

Antonio J. Guirao, Olena Kozhushkina (2013)

Studia Mathematica

Similarity:

We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).

On upper and lower bounds of the numerical radius and an equality condition

Takeaki Yamazaki (2007)

Studia Mathematica

Similarity:

We give an inequality relating the operator norm of T and the numerical radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius than Kittaneh's result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition for the numerical radius to be equal to half the operator norm.

Numerical radius inequalities for Hilbert space operators

Fuad Kittaneh (2005)

Studia Mathematica

Similarity:

It is shown that if A is a bounded linear operator on a complex Hilbert space, then 1/4 ||A*A + AA*|| ≤ (w(A))² ≤ 1/2 ||A*A + AA*||, where w(·) and ||·|| are the numerical radius and the usual operator norm, respectively. These inequalities lead to a considerable improvement of the well known inequalities 1/2 ||A|| ≤ w(A) ≤ || A||. Numerical radius inequalities for products and commutators of operators are also obtained. ...

Numerical integration in the Trefftz finite element method

Rozehnalová, Petra

Similarity:

Using the high order Trefftz finite element method for solving partial differential equation requires numerical integration of oscillating functions. This integration could be performed, instead of classic techniques, also by the Levin method with some modifications. This paper shortly describes both the Trefftz method and the Levin method with its modification.

Numerical radius inequalities for 2 × 2 operator matrices

Omar Hirzallah, Fuad Kittaneh, Khalid Shebrawi (2012)

Studia Mathematica

Similarity:

We derive several numerical radius inequalities for 2 × 2 operator matrices. Numerical radius inequalities for sums and products of operators are given. Applications of our inequalities are also provided.

Verified numerical computations for large-scale linear systems

Katsuhisa Ozaki, Takeshi Terao, Takeshi Ogita, Takahiro Katagiri (2021)

Applications of Mathematics

Similarity:

This paper concerns accuracy-guaranteed numerical computations for linear systems. Due to the rapid progress of supercomputers, the treatable problem size is getting larger. The larger the problem size, the more rounding errors in floating-point arithmetic can accumulate in general, and the more inaccurate numerical solutions are obtained. Therefore, it is important to verify the accuracy of numerical solutions. Verified numerical computations are used to produce error bounds on numerical...