On rational automorphs of quadratic forms
J. Wójcik (1974)
Colloquium Mathematicae
Similarity:
J. Wójcik (1974)
Colloquium Mathematicae
Similarity:
Lerna Pehlivan, Kenneth S. Williams (2015)
Acta Arithmetica
Similarity:
Michael A. Bennett, Yann Bugeaud (2012)
Acta Arithmetica
Similarity:
Michelle Manes, Yu Yasufuku (2011)
Acta Arithmetica
Similarity:
Stephen Beale, D.K. Harrison (1989)
Aequationes mathematicae
Similarity:
Alexander E. Patkowski (2011)
Colloquium Mathematicae
Similarity:
We provide a new approach to establishing certain q-series identities that were proved by Andrews, and show how to prove further identities using conjugate Bailey pairs. Some relations between some q-series and ternary quadratic forms are established.
Laghribi, Ahmed (1999)
Documenta Mathematica
Similarity:
Svetozar Kurepa (1987)
Publications de l'Institut Mathématique
Similarity:
Heima Hayashi (2011)
Acta Arithmetica
Similarity:
Arnold K. Pizer (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Byeong-Kweon Oh (2011)
Acta Arithmetica
Similarity:
Elomary, Mohamed Abdou (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Kenneth S. Williams (2014)
Acta Arithmetica
Similarity:
Under the assumption that the ternary form x² + 2y² + 5z² + xz represents all odd positive integers, we prove that a ternary quadratic form ax² + by² + cz² (a,b,c ∈ ℕ) represents all positive integers n ≡ 4(mod 8) if and only if it represents the eight integers 4,12,20,28,52,60,140 and 308.
B. Birch (1958)
Acta Arithmetica
Similarity:
Vladimir Janković (2005)
The Teaching of Mathematics
Similarity: