The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Metric trees in the Gromov--Hausdorff space”

Some results on metric trees

Asuman Güven Aksoy, Timur Oikhberg (2010)

Banach Center Publications

Similarity:

Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is...

Compact widths in metric trees

Asuman Güven Aksoy, Kyle Edward Kinneberg (2011)

Banach Center Publications

Similarity:

The definition of n-width of a bounded subset A in a normed linear space X is based on the existence of n-dimensional subspaces. Although the concept of an n-dimensional subspace is not available for metric trees, in this paper, using the properties of convex and compact subsets, we present a notion of n-widths for a metric tree, called Tn-widths. Later we discuss properties of Tn-widths, and show that the compact width is attained. A relationship between the compact widths and Tn-widths...

Analyzing sets of phylogenetic trees using metrics

Damian Bogdanowicz (2011)

Applicationes Mathematicae

Similarity:

The reconstruction of evolutionary trees is one of the primary objectives in phylogenetics. Such a tree represents historical evolutionary relationships between different species or organisms. Tree comparisons are used for multiple purposes, from unveiling the history of species to deciphering evolutionary associations among organisms and geographical areas. In this paper, we describe a general method for comparing phylogenetic trees and give some basic properties of the Matching Split...

Some Results on Maps That Factor through a Tree

Roger Züst (2015)

Analysis and Geometry in Metric Spaces

Similarity:

We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map...

Best approximation of coincidence points in metric trees

Bożena Piątek (2008)

Annales UMCS, Mathematica

Similarity:

In this work we present results on fixed points, pairs of coincidence points and best approximation for ε-semicontinuous mappings in metric trees. It is a generalization of the similar properties of upper and almost lower semicontinuous mappings.