Displaying similar documents to “Maxwell-Schrödinger equations in singular electromagnetic field”

The Cauchy problem for the coupled Klein-Gordon-Schrödinger system

Changxing Miao, Youbin Zhu (2006)

Annales Polonici Mathematici

Similarity:

We consider the Cauchy problem for a generalized Klein-Gordon-Schrödinger system with Yukawa coupling. We prove the existence of global weak solutions by the compactness method and, through a special choice of the admissible pairs to match two types of equations, we prove the uniqueness of those solutions by an approach similar to the method presented by J. Ginibre and G. Velo for the pure Klein-Gordon equation or pure Schrödinger equation. Though it is very simple in form, the method...

Resonances of two-dimensional Schrödinger operators with strong magnetic fields

Tuan Duong, Anh (2012)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 81Q20 (35P25, 81V10). The purpose of this paper is to study the Schrödinger operator P(B,w) = (Dx-By^2+Dy^2+w^2x^2+V(x,y),(x,y) О R^2, with the magnetic field B large enough and the constant w № 0 is fixed and proportional to the strength of the electric field. Under certain assumptions on the potential V, we prove the existence of resonances near Landau levels as B®Ґ. Moreover, we show that the width of resonances is of size O(B^-Ґ). ...

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Similarity:

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Weak Asymptotics for Schrödinger Evolution

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.

Dispersion Phenomena in Dunkl-Schrödinger Equation and Applications

Mejjaoli, H. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35Q55,42B10. In this paper, we study the Schrödinger equation associated with the Dunkl operators, we study the dispersive phenomena and we prove the Strichartz estimates for this equation. Some applications are discussed.

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Similarity:

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials. ...

Nonlinear Schrödinger equation on four-dimensional compact manifolds

Patrick Gérard, Vittoria Pierfelice (2010)

Bulletin de la Société Mathématique de France

Similarity:

We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness...

Weighted Dispersive Estimates for Solutions of the Schrödinger Equation

Cardoso, Fernando, Cuevas, Claudio, Vodev, Georgi (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35L15, 35B40, 47F05. Introduction and statement of results. In the present paper we will be interested in studying the decay properties of the Schrödinger group. The authors have been supported by the agreement Brazil-France in Mathematics – Proc. 69.0014/01-5. The first two authors have also been partially supported by the CNPq-Brazil.