The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI”

Shape optimization for dynamic contact problems

Andrzej Myśliński (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and the necessary optimality condition is formulated.

Shape and topology optimization of the robust compliance the level set method

Frédéric de Gournay, Grégoire Allaire, François Jouve (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm...

Multi-phase structural optimization via a level set method

G. Allaire, C. Dapogny, G. Delgado, G. Michailidis (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves...

Preface

Ronald Hoppe, Karl Kunisch, Jan Sokołowski, Antoni Żochowski (2010)

Control and Cybernetics

Similarity: