Displaying similar documents to “Continuous adjoint approach to shape optimization with respect to 2D incompressible fluid flow”

Gradient-free and gradient-based methods for shape optimization of water turbine blade

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Horníková, Hana, Michálková, Kristýna, Turnerová, Eva

Similarity:

The purpose of our work is to develop an automatic shape optimization tool for runner wheel blades in reaction water turbines, especially in Kaplan turbines. The fluid flow is simulated using an in-house incompressible turbulent flow solver based on recently introduced isogeometric analysis (see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009). The proposed automatic shape optimization approach is based on a so-called hybrid optimization...

Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty

Toni Lassila, Andrea Manzoni, Alfio Quarteroni, Gianluigi Rozza (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We review the optimal design of an arterial bypass graft following either a (i) boundary optimal control approach, or a (ii) shape optimization formulation. The main focus is quantifying and treating the uncertainty in the residual flow when the hosting artery is not completely occluded, for which the worst-case in terms of recirculation effects is inferred to correspond to a strong orifice flow through near-complete occlusion.A worst-case optimal control approach is applied to the steady...

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.