Displaying similar documents to “Fuzzy clustering of fuzzy data considering the shape of the membership functions using a novel representation learning technique”

Object-parameter approaches to predicting unknown data in an incomplete fuzzy soft set

Yaya Liu, Keyun Qin, Chang Rao, Mahamuda Alhaji Mahamadu (2017)

International Journal of Applied Mathematics and Computer Science

Similarity:

The research on incomplete fuzzy soft sets is an integral part of the research on fuzzy soft sets and has been initiated recently. In this work, we first point out that an existing approach to predicting unknown data in an incomplete fuzzy soft set suffers from some limitations and then we propose an improved method. The hidden information between both objects and parameters revealed in our approach is more comprehensive. Furthermore, based on the similarity measures of fuzzy sets, a...

On classification with missing data using rough-neuro-fuzzy systems

Robert K. Nowicki (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.

Fuzzy sets in computer vision: an overview.

Pilar Sobrevilla, Eduard Montseny (2003)

Mathware and Soft Computing

Similarity:

Every computer vision level crawl with uncertainty, what makes its management a significant problem to be considered and solved when trying for automated systems for scene analysis and interpretation. This is why fuzzy set theory and fuzzy logic is making many inroads into the handling of uncertainty in various aspects of image processing and computer vision. The growth within the use of fuzzy set theory in computer vision is keeping pace with the use of more complex algorithms...

Evolution-fuzzy rule based system with parameterized consequences

Piotr Czekalski (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following steps:...

Fuzzy sets in pattern recognition, image analysis and automatic speech recognition

Dwijesh Dutta Majumder (1985)

Aplikace matematiky

Similarity:

Fuzzy set theory, a recent generalization of classical set theory, has attracted the attention of researchers working in various areas including pattern recognition, which has had a seminal influence in the development of this new theory. This paper attempts to discuss some of the methodologies that have been suggested for pattern recognition, and techniques for image processing and speech recognition.

Neuro-fuzzy modelling based on a deterministic annealing approach

Robert Czabański (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty...

A neuro-fuzzy system for isolated hand-written digit recognition.

Miguel Pinzolas, José Javier Astrain, Jesús Villadangos, José Ramón González de Mendívil (2001)

Mathware and Soft Computing

Similarity:

A neuro-fuzzy system for isolated hand-written digit recognition using a similarity fuzzy measure is presented. The system is composed of two main blocks: a first block that normalizes the input and compares it with a set of fuzzy patterns, and a second block with a multilayer perceptron to perform a neuronal classification. The comparison with the fuzzy patterns is performed via a fuzzy similarity measure that uses the Yager parametric t-norms and t-conorms. Along this work, several...